Knowledge-Driven Automated Extraction of the Human Cerebral Ventricular System from MR Images
نویسندگان
چکیده
This work presents an efficient and automated method to extract the human cerebral ventricular system from MRI driven by anatomic knowledge. The ventricular system is divided into six three-dimensional regions; six ROIs are defined based on the anatomy and literature studies regarding variability of the cerebral ventricular system. The distribution histogram of radiological properties is calculated in each ROI, and the intensity thresholds for extracting each region are automatically determined. Intensity inhomogeneities are accounted for by adjusting intensity threshold to match local situation. The extracting method is based on region-growing and anatomical knowledge, and is designed to include all ventricular parts, even if they appear unconnected on the image. The ventricle extraction method was implemented on the Window platform using C++, and was validated qualitatively on 30 MRI studies with variable parameters.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملAutomatic Landmarking of 2D Medical Shapes Using the Growing Neural Gas Network
MR Imaging techniques provide a non-invasive and accurate method for determining the ultra-structural features of human anatomy. In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. Our approach is based on an automated landmark extraction algorithm which automatically selects points along the contour of the ventr...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملAutomatic segmentation of the ventricular system from MR images of the human brain.
An algorithm was developed that automatically segments the lateral and third ventricles from T1-weighted 3-D-FFE MR images of the human brain. The algorithm is based upon region-growing and mathematical morphology operators and starts from a coarse binary total brain segmentation, which is obtained from the 3-D-FFE image. Anatomical knowledge of the ventricular system has been incorporated into...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 18 شماره
صفحات -
تاریخ انتشار 2003